YEAR 1 | PURE MATHEMATICS | WEEK 22 EXAM QUESTIONS

Question	1	2	3	4	5	Total
Marks						
Max Marks	6	8	8	7	9	38

COMPLETE THE FOLLOWING QUESTIONS UNDER EXAM CONDITIONS TIME ALLOWED: 50 MINUTES CHECK AND CORRECT USING THE MARK SCHEME

Q1 (EDEXCEL C2 JAN 2006 Q2)

(a)	Find the first 3	terms, in	ascending powers	s of x, of	the	binomial	expansion	of
-----	------------------	-----------	------------------	------------	-----	----------	-----------	----

$$(1 + px)^9$$
,

where p is a constant.

(2)

These first 3 terms are 1, 36x and qx^2 , where q is a constant.

(b) Find the value of p and the value of q.

(4)

Q2 (EDEXCEL C2 Jun 2006 Q4)

$$f(x) = 2x^3 + 3x^2 - 29x - 60.$$

(a) Find the remainder when f(x) is divided by (x + 2).

(2)

(b) Use the factor theorem to show that (x + 3) is a factor of f(x).

(2)

(c) Factorise f(x) completely.

(4)

Q3 (EDEXCEL C1 June 2005 Q6)

Find the set of values of x for which

(a)
$$3(2x+1) > 5-2x$$
,

(2)

(b)
$$2x^2 - 7x + 3 > 0$$
,

(4)

(c) **both**
$$3(2x + 1) > 5 - 2x$$
 and $2x^2 - 7x + 3 > 0$.

(2)

YEAR 1 | PURE MATHEMATICS | WEEK 22 EXAM QUESTIONS

Q4 (EDEXCEL C2 JUN 2014 Q8)

(a) Sketch the graph of

$$y = 3^x$$
, $x \in \mathbb{R}$

showing the coordinates of any points at which the graph crosses the axes.

(2)

(b) Use algebra to solve the equation

$$3^{2x} - 9(3^x) + 18 = 0$$

giving your answers to 2 decimal places where appropriate.

(5)

Q5 (EDEXCEL C1 JUNE 2009 Q10)

- (a) Factorise completely $x^3 6x^2 + 9x$ (3)
- (b) Sketch the curve with equation

$$v = x^3 - 6x^2 + 9x$$

showing the coordinates of the points at which the curve meets the x-axis.

(4)

Using your answer to part (b), or otherwise,

(c) sketch, on a separate diagram, the curve with equation

$$y = (x-2)^3 - 6(x-2)^2 + 9(x-2)$$

showing the coordinates of the points at which the curve meets the x-axis.

(2)

(Total 9 marks)